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Abstract Root colonization by arbuscular mycorrhizal
(AM) fungi is a dynamic process involving major changes
in plant gene expression. Here, the expression of a
phosphate transporter gene (PT3) and several defense
genes, already known to be involved in the various stages
of AM establishment, were monitored in the mycelium
donor plant (MDP) in vitro culture system associating
potato plantlets with an AM fungus. This system allows fast
and homogenous mycorrhization of seedlings at their early
stage of development by growing the plantlets in active
mycelial networks, but has never been validated for gene
expression analysis. Here, QRT-PCR analyses were con-
ducted in parallel to pre- (1 day), early (2 and 3 days), and
late (6, 9, and 15 days) stages of root colonization. We
observed the induction of a plant gene marker of AM root
colonization (PT3) at the late stage and the induction of
MAPK and PAL genes at the early and late stages of root
colonization. We also demonstrated the induction of PR1
and PR2 genes at pre- and late stages and of GST1 and Lox
genes at a late stage of root colonization. These results
validated the MDP in vitro culture system as an optimal
tool to study gene expression analysis during the AM fungi

establishment. This system further opened the door to
investigate gene networks associated with the plants–AM
fungi symbiosis.
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Introduction

Arbuscular mycorrhizal (AM) symbiosis represents a
unique association between the mycelium of a soil-borne
fungus and more than 80% of higher plants. The fungus, an
obligate biotroph belonging to the phylum Glomeromycota
(Schuβler et al. 2001), receives carbohydrates required to
complete its life cycle from the host plant; in exchange, it
provides the plant with nutrients, such as phosphate. The
establishment of this successful mutualistic association
develops from a complex and dynamic process involving
major changes in fungal and plant gene expression
(Franken et al. 2007; Reinhardt 2007). During this process,
phosphate transporter genes (Liu et al. 1998) as well as
transient defense-response genes are activated in the host
plant (Liu et al. 2003).

In the last few years, in vitro cultivation systems
associating excised root organs with AM fungi have been
used to investigate gene expression (González-Guerrero et
al. 2005; Elfstrand et al. 2005; Waschke et al. 2006). These
systems present several advantages, among which are the
absence of undesirable microorganisms and the possibility
to nondestructively monitor the development of the fungal
colony. However, some limitations are also associated to
these systems, materialized by the absence of photosyn-
thetic tissues: a normal hormonal balance and physiological
source-sink relationships (Fortin et al. 2002). In addition,
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the roots used in these experiments are, most often,
genetically transformed organs.

Recently, Voets et al. (2005) and Dupré de Boulois et al.
(2006) developed two in vitro autotrophic culture systems
associating, respectively, potato and Medicago truncatula
to root organ culture (ROC)-produced AM fungal spores.
Mass production of spores (i.e., approximately 12,000 in
22 weeks) was obtained with potato (Voets et al. 2005), and
the transport of C from the shoot of M. truncatula to the
fungus (Voets et al. 2008) and of P and C from a root-free
labeled compartment to the shoot via the extraradical
mycelium (Dupré de Boulois et al. 2006) was demonstrated.
However, with both systems, high-level colonization took
several weeks, and nearly full-grown mycorrhizal plants
were produced before sampling. This may hinder experi-
ments on gene expression analysis in plantlets during the
early stages of root colonization. It is obvious that any
system allowing the fast and homogenous mycorrhization of
seedlings within a few days is highly desirable.

In nature, the AM fungal mycelium growing from
colonized roots represents an important source of inoculum
for the colonization of neighboring plants due to the several
hyphal apices ramifying from the colony (Friese and Allen
1991). Recently, Voets et al. (2009) have developed a new
in vitro mycorrhization system adapted to seedlings by
using the symbiotic phase of the fungus as inoculum for
fast and homogenous AM colonization. This mycelium
donor plant (MDP) in vitro culture system was successfully
applied to M. truncatula plants opening large perspectives
to study various aspects of the AM fungi and AM
symbiosis.

In this study, we validated the MDP in vitro culture
system of Voets et al. (2009) for gene expression analysis.
The expression of a phosphate transporter gene (PT3) and
several defense genes, already well known to be involved in
the various stages of AM establishment, were analyzed at
six time points corresponding to the establishment of
Glomus intraradices in roots of potato plantlets by
combining the quantitative real-time-polymerase chain
reaction (QRT-PCR) analyses with the assessment of
intraradical root colonization.

Materials and methods

Biological material

Propagation and maintenance of stock of potato plantlets

Potato plantlets propagated in vitro (Solanum tuberosum L.,
var. Bintje) were supplied by the Station de Haute Belgique
in Libramont, Belgium. Plantlets were micropropagated
every 5 weeks as described in Voets et al. (2005).

Culture, propagation, and maintenance of G. intraradices

A root organ culture of G. intraradices Schenck and
Smith MUCL 41833 was supplied by GINCO (http://
www.mbla.ucl.ac.be/ginco-bel). The spores were extracted
by solubilization of the gellan gel (Doner and Becard
1991) and approximately 100 were placed in the near
vicinity of actively growing transformed carrot (Daucus
carota L.) roots (approximately 70 mm in length) on Petri
plates (90 mm in diameter) containing the modified
Strullu–Romand (MSR) medium (Declerck et al. 1998
modified from Strullu and Romand 1986), solidified with
3 g l−1 Phytagel (Sigma-Aldrich, St. Louis, USA;
Cranenbrouck et al. 2005). The Petri plates were incubated
for 3 months in the dark in an inverted position at 27°C,
and several thousand spores were produced during this
period.

M. truncatula seed disinfection

Seeds of M. truncatula Gaertn. cv. Jemalong A 17 (SARDI,
Australia) were surface-sterilized by immersion in sodium
hypochlorite (8% active chloride) for 12 min, rinsed three
times in deionized sterile water and germinated in groups of
25 on Petri plates (90 mm in diameter) filled with 35 ml
MSR medium without sucrose or vitamins, and solidified
with 3 g l−1 Phytagel (Sigma-Aldrich, St. Louis, USA).
Petri plates were incubated at 27°C in the dark.

Experimental design

Micropropagated potato plantlets were plated on actively
growing extraradical mycelium networks of AM fungi
developing in the hyphal compartment (HC) of bicompart-
mental Petri plates (for details, see Voets et al. 2009). The
time course of gene expression was analyzed during
symbiotic establishment in potato roots.

Eight weeks after association, a dense extraradical
mycelium bearing numerous spores developed in the HC.
The length of mycelium was 6,261 cm±2367 and the
number of spores, 19,385±9,710 (estimated following the
method of Voets et al. 2005).

Two new holes (±2-mm diameter), separated by a 4.5-cm
distance from each other, were then made in the base and the
lid of the Petri plates at the side of the HC. One ten-day-old
potato plantlet was inserted in each hole following the same
methodology described by Voets et al. (2009) with their roots
in direct contact with the extraradical mycelium. The Petri
plates were then sealed carefully and incubated in a growth
chamber under controlled conditions, that is, 22/18°C (day/
night), 70% relative humidity, photoperiod of 16 h d−1, and
an average photosynthetic photon flux of 225 μmol m-2 s−1.
Identically, two micropropagated potato plantlets were
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placed in the HC of the control treatment (i.e., noninoculated
4-day-old M. truncatula seedlings) and grown under the
same conditions as described previously.

Twenty-four cultural systems were randomly divided
into 6 groups of four replicates. Roots were harvested 1, 2,
3, 6, 9, and 15 days after contact (dac) with the extraradical
mycelium network of G. intraradices. One control plant
was also harvested each time. For each cultural system, the
two potato plantlets from the HC were pooled to obtain
sufficient material for analysis. Half of the material was
then used to estimate intraradical root colonization while
the other half was used for gene expression analysis.

Intraradical root colonization

The intraradical root colonization was estimated under a
dissecting microscope (Olympus SZ40, Olympus Optical
GmbH, Hamburg, Germany) at ×10 to ×40 magnification,
according to McGonigle et al. (1990). Roots were cleared
in 10% KOH at 50°C for 90 min, rinsed with distilled
water, and stained with trypan blue 1% (Phillips and
Hayman 1970) at 50°C for 60 min. Percentages of root
colonization were subjected to one-way analysis of variance
(ANOVA). Tukey's Honest Significant Difference (HSD)
was conducted to identify significant differences (P≤0.05)
between the groups. Data analysis was performed with the
SAS enterprise guide 4.1 (SAS Institute Inc., Cary, USA).

RNA extraction

Total RNA was extracted from 50 to 100 mg frozen
material with Trizol® reagent (Invitrogen, Carlsbad, USA)
with an additional chloroform purification step and then
purified using the Purelink™ Micro-to-Midi total RNA
purification system (Invitrogen, Carlsbad, USA) according
to the manufacturer's instructions. The total RNA was
subsequently treated with the TURBO DNA-free™ kit
(Ambion, Austin, USA) according to the manufacturer’s
instructions. Concentration and purity of total RNA were
determined in a NanoDrop®-ND 1000 UV-Vis Spectropho-
tometer (NanoDrop Technologies, Wilmington, USA) using
a 2-µl aliquot of the total RNA solutions. RNA purity was
estimated from the A260/A280 absorbance ratio.

Reverse transcription

Following total RNA extraction, reverse transcription (RT)
of 500 ng of RNA was performed with the Transcriptor
High Fidelity cDNA Synthesis Kit (Roche, Montreal,
Canada) in a volume of 20 µl with Oligo(dT)18 primer at
55°C for 20 min according to the manufacturer's instruc-
tions. For each RNA sample, a reaction without RT was
performed as a control for contamination by genomic DNA.

Primer design

Four reference genes: glyceraldehyde phosphate dehydroge-
nase (GAPDH), ubiquitin conjugating enzyme-like (Ubc),
elongation factor 1-alpha (EF1-α), and beta-tubulin (β-tub)
(Nicot et al. 2005) and seven genes: gluthatione-S-transferase
1 (GST1), lipoxygenase (Lox), MAP kinase (MAPK),
Pathogenesis Related 1 (PR1), Pathogenesis Related 2
(PR2), phenylalanine ammonia lyase (PAL), and phos-
phate transporter 3 (PT3) were selected. Potato nucleotide
sequences were obtained from the GenBank database.
Eleven primer pairs were designed from these sequences
(90–110-bp length, optimal temperature of annealing at
60°C, GC% between 40% and 60%) with the LightCycler
Probe Design Software 2.0 (Roche, Montreal, Canada).
The forward and reverse primer sets and melting temper-
atures (in brackets) were as follows: 5′-CCAAGTAA
CCTCTTGCTAAATGC-3′ and 5′-CTGTCATATTCTC
GTTCTCTAGG-3 for MAPK (79°C); 5′-GCTTTGC
TTACTTATTATTGGCG-3′ and 5′-GGAAGCAGCCT
TAGTAGCATT-3′ for PT3 (82°C); for the nine other primer
sets, see Gallou et al. (2009).

Quantitative real-time PCR

QRT-PCR analysis was performed using the LightCycler
2.0 (Roche, Montreal, Canada). A set of standard solutions
prepared from RT products was included in each run.
Reactions were prepared in capillaries using the following
concentrations: 7 µl of PCR water, 4 µl of 5× LightCycler®
FastStart DNA MasterPLUS SYBR Green I Mix (Roche,
Montreal, Canada), 2 µl of each forward and reverse primer
(0.5 µM), and 5 µl of 1:10 diluted cDNA or standard
solution as template (for LightCycler experimental run, see
Gallou et al. 2009). In order to check PCR efficiency,
standard curves (log of cDNA dilution versus Cp) using
serial 10-fold dilution of cDNA were created for each pair
of selected primers. To obtain good comparison and
normalization, PCR efficiency should range between 80%
and 115%. In this study, all the PCRs displayed efficiencies
between 91% and 104%. For the mathematical model, it
was necessary to determine the crossing point (Cp) for each
transcript, defined as the point at which the fluorescence
rises appreciably above the background fluorescence. The
Fit point method was performed in the LightCycler
software 4.1 at which Cp was measured at a constant
fluorescence level. The combination of several reference
genes smooths out normalization error due to the small
variation in the expression of a single reference gene
(Vandesompele et al. 2002). We determined the best
combination of reference genes for normalization of gene
expression by using the geNorm software (http://medgen.
ugent.be/∼jvdesomp/geNorm). The most stable genes
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expressed in the potato roots during symbiotic establish-
ment with G. intraradices were β-tub and EF1-α. The
pairwise variation demonstrated that three reference genes
(i.e., β-tub, EF1-α, and GAPDH) were sufficient to
normalize gene expression in potato plantlets grown in the
extraradical mycelium network of G. intraradices (data not
shown). Normalization was achieved using the geometric
means of the three reference genes, i.e., β-tub, EF1-α, and
GAPDH. The data were analyzed statistically with software
REST 2008 (relative expression software tool; Pfaffl et al.
2002; http://rerst.gene-quantification.info/). Significance
values were set at P value <0.05. P(H1): the probability
of alternate hypothesis that differentiates between sample
and control groups is due only to chance.

Results

Time course of root colonization of potato plantlets grown
in the extraradical mycelium network of G. intraradices

The intraradical root colonization of potato plantlets was
assessed 1, 2, 3, 6, 9, and 15 dac of the root system with the
AM fungal extraradical mycelium network (Table 1). No
AM root colonization was observed 1 dac with the
extraradical mycelium network. The first traces of AM
fungal root colonization were detected 2 dac (1.9±3%) and
increased slightly (9.9±7%) 3 dac. However, no significant
differences were observed between the values recorded at 1,
2, and 3 dac. Neither arbuscules nor vesicles were observed
at 1, 2, and 3 dac. Six dac, the AM root colonization
increased markedly (24±24%), and the first arbuscules and
vesicles were observed. The percentages of arbuscules and
vesicles observed 6 dac were 3.9 and 0.3, respectively. The
AM root colonization estimated 9 dac was 48.2±14% and
remained almost identical 15 dac (49.9±8%). The values of
AM root colonization were significantly higher, 9 and
15 dac as compared with 1, 2, and 3 dac. The 6 dac values
recorded were intermediate between those obtained 1, 2,
3 dac and 9 and 15 dac. At 9 dac, the percentages of

arbuscules and vesicles were 13.6 and 3.5, respectively. At
15 dac, the percentages of arbuscules and vesicles were 8.2
and 5.7, respectively.

Expression of marker gene of AM root colonization
of potato plantlets grown in the extraradical mycelium
network of G. intraradices

The relative expression ratio of PT3 genes in potato roots
was assessed 1, 2, 3, 6, 9, and 15 dac with the extraradical
mycelium network (Table 2). We observed an induction of
PT3 gene 9 and 15 dac with a maximum of 15 dac
[65.30 dac (19.90–191.08 dac)].

Expression of defense response genes in potato
plantlets grown in the extraradical mycelium network
of G. intraradices

The relative expression ratio of the defense response genes
GST1, Lox, MAPK, PAL, PR1, and PR2 in potato roots was
assessed 1, 2, 3, 6, 9, and 15 dac with the extraradical
mycelium network (Table 2). For the GST1 gene, the
induction of 6, 9, and 15 dac was detected with a maximum
of 15 dac [5.68 dac (4.20–8.76 dac)]. For the Lox gene, the
induction of 9 and 15 dac was detected with a maximum of
15 dac [6.12 (2.73–10.13)]. The MAPK and PAL genes
were induced 2 dac, and an induction was noted 6, 9, and
15 dac with a maximum of 15 dac [8.12 dac (3.92–
16.60 dac)] for MAPK and [28.55 (11.40 – 60.85)] for PAL.
For the two Pathogen Related genes (i.e., PR1 and PR2), an
induction of 1 dac was detected, and respectively 9 and
15 dac with a maximum of 15 dac [105.31 dac (60.33–
229.85 dac)] for PR1, and 6, 9, and 15 dac with a maximum
of 15 dac [159.94 (85.56 – 330.10)] for PR2.

Discussion

Root organ cultures have been considered as suitable
systems to investigate various aspects of the AM fungi

Table 1 Intraradical colonization of potato roots plated on actively growing extraradical mycelium networks of G. intraradices

Intraradical root colonization during the time coursea

1 2 3 6 9 15

Colonization (%) Total 0 (±0) a 1.9 (±3) a 9.9 (±7) a 24 (±24) ab 48.2 (±14) b 49.9 (±8) b

Arbuscules 0 0 0 3.9 13.6 8.2

Vesicles 0 0 0 0.3 3.5 5.7

Values of colonization followed by different letters differ significantly at P≤0.05 (one-way ANOVA and Tukey's HSD). The standard error is
shown in brackets (biological replicates = 4)
a Days after contact of potato plantlets with the network of G. intraradices
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and AM symbiosis (Fortin et al. 2002). Recently, autotro-
phic nontransformed plants have been successfully cultured
in vitro in association with AM fungi (Voets et al. 2005;
Dupré de Boulois et al. 2006), and a fast-track in vitro
mycorrhization system (i.e., the MDP in vitro culture
system) was developed (Voets et al. 2009). This system
opens large perspectives for molecular studies but should
be validated for gene expression analysis. Here, the
expression of a phosphate transporter gene and six defense
genes were monitored by QRT-PCR and paralleled with
the multistep process of potato AM fungal root coloniza-
tion. Gene expression change could be observed in
prestage (before root colonization, 1 dac), early stage
(hyphal root colonization before arbuscule and vesicle
formation, 2 and 3 dac), and the late stage of root
colonization (intense root colonization with arbuscules and
vesicles formed, 6, 9, and 15 dac).

During the precolonization stage of the potato–G. intra-
radices interaction (1 dac), we observed the induction of
PR1 and PR2 genes while no induction was noted during
the following 2 and 3 dac (early root colonization stage).
This change in gene expression between pre- and early
stages of AM fungi root colonization was reported earlier
by Kapulnik et al. (1996), Ruíz-Lozano et al. (1999), and
Liu et al. (2003) and associated with a transient level of
defense-gene expression.

During the early stage of the potato–G. intraradices
interaction (2 and 3 dac), we observed the induction of the
MAPK gene (at 2 dac). This observation is consistent with
the role of MAP kinases in the signaling of plant
abiotic stress and pathogen defense (Nakagami et al.
2005) and corroborates the findings of Deguchi et al.
(2007). The early stage of root colonization was also

characterized by the induction of PAL gene as reported by
Deguchi et al. (2007).

During the late stage of the potato–G. intraradices
interaction (6, 9, and 15 dac), we observed an induction
of PR1 (9 dac) and PR2 (6 dac) with a buildup in the level
of induction, paralleled thereafter with increased root
colonization. PR1 gene is a PR protein with antifungal
properties and an unknown microbial target (Antoniw et al.
1980). This gene is known to respond to fungal infection in
potato (Gallou et al. 2009). PR2 gene is a β-1,3-glucanase
induced, among others, in M. truncatula roots colonized by
G. intraradices and Glomus mosseae during the late stage
of root colonization (Hohnjec et al. 2005).

We noted the induction of a Lox gene (i.e., the first
enzyme in the biosynthesis pathway of JA gene) 9 dac. This
is in agreement with earlier results showing that, in roots of
mycorrhizal plants, the levels of JA were higher as
compared with nonmycorrhizal controls (Meixner et al.
2005; Stumpe et al. 2005; Hause et al. 2007). We also
observed a significant induction of PAL gene 6, 9, and
15 dac with increased percentages of arbuscules and
vesicles in roots. Harrison and Dixon (1994) have demon-
strated that transcripts encoding enzymes of the isoflavone
biosynthetic pathway, such as PAL and chalcone synthase,
are induced specifically in cells containing arbuscules.

Glutathione-S-transferase transcripts have been found to
accumulate in roots containing arbuscules (Wulf et al.
2003; Brechenmacher et al. 2004). In our study, we
observed the induction of the GST1 gene in the potato
roots 6, 9, and 15 dac in parallel with the formation of the
first arbuscules and vesicles. We also observed the
induction of an MAPK gene in the late stages of root
colonization, as reported by Weidmann et al. (2004) and

Table 2 Relative expression ratio of seven genes (gluthatione-S-transferase 1 (GST1), lipoxygenase (Lox), MAP kinase (MAPK), Pathogenesis
Related 1 (PR1), Pathogenesis Related 2 (PR2), phenylalanine ammonia lyase (PAL), and phosphate transporter 3 (PT3)) in potato roots plated on
actively growing extraradical mycelium networks of G. intraradices normalized by the geometric mean of the three reference genes (i.e., β-tub,
EF1-α, and GAPDH)

Gene name Relative expression ratio during the time coursea

1 2 3 6 9 15

PT3 1.86 [0.44–9.71] 0.24 [0.08–0.94] 1.81 [1.05–2.56] 0.28 [0.05–4.00] 5.51 [2.58–16.02] 65.30 [19.90–191.08]

GST1 1.40 [1.01–2.14] 1.41 [0.93–2.70] 0.30 [0.19–0.46] 2.72 [2.39–3.10] 4.48 [2.93–7.47] 5.68 [4.20–8.76]

Lox 1.00 [0.40–3.71] 0.63 [0.10–2.08] 0.62 [0.47–0.84] 1.80 [1.02–4.51] 3.38 [1.26–7.60] 6.12 [2.73–10.13]

MAPK 0.64 [0.17–2.09] 5.74 [1.75–16.78] 0.42 [0.32–0.56] 2.64 [1.70–4.01] 2.01 [1.30–3.95] 8.12 [3.92–16.60]

PAL 1.95 [0.83–5.11] 7.82 [3.22–21.04] 3.88 [1.52–14.37] 12.10 [5.32–30.22] 3.06 [1.26–11.25] 28.55 [11.40–60.85]

PR1 2.50 [1.60–4.79] 0.15 [0.05–0.69] 1.05 [0.70–1.63] 1.21 [0.55–2.31] 7.35 [1.40–57.06] 105.31 [60.33–229.85]

PR2 3.94 [1.57–10.30] 1.63 [0.67–3.47] 1.80 [0.98–3.27] 13.39 [6.07–29.52] 10.51 [1.35–194.15] 159.94 [85.56–330.10]

Data were analyzed statistically by the software REST 2008 (relative expression software tool; Pfaffl et al. 2002; http://rerst.gene-quantification.
info/). Upregulated genes (in italics) with significance values were set at P value <0.05 (P(H1): the probability of alternate hypothesis that
differentiates between sample and control groups is due only to chance). The standard error range is shown in brackets (biological replicates = 4)
a Days after contact of potato plantlets with the extraradical mycelium network of G. intraradices

Table 2 Relative expression ratio of seven genes (gluthatione-S-
transferase 1 (GST1), lipoxygenase (Lox), MAP kinase (MAPK),
Pathogenesis Related 1 (PR1), Pathogenesis Related 2 (PR2),
phenylalanine ammonia lyase (PAL), and phosphate transporter 3

(PT3)) in potato roots plated on actively growing extraradical
mycelium networks of G. intraradices normalized by the geometric
mean of the three reference genes (i.e., β-tub, EF1-α, and GAPDH)

Mycorrhiza (2010) 20:201–207 205

http://rerst.gene-quantification.info/
http://rerst.gene-quantification.info/


Grunwald et al. (2004) in M. truncatula roots colonized by
G. mosseae.

During the late stage of the potato–G. intraradices
interaction (6, 9, and 15 dac), we observed the induction
of the phosphate transporter gene PT3 (9 dac) with a
buildup in the level of induction, 15 dac, paralleled with an
increase in root colonization. Rausch et al. (2001) have
identified the phosphate transporter gene StPT3 in potato
and localized PT3 induction specifically in arbuscule-
containing cells.

During this study on gene expression analysis at the
different stages of AM establishment with the MDP in vitro
culture system, we observed the induction of PT3 gene at
the late stage of potato–G. intraradices interaction. Two PR
genes (PR1 and PR2) were induced prior to root coloniza-
tion with a transient expression at 2, 3, and 6 dac (for PR1)
followed by a continuous buildup in the level of induction.
We finally demonstrated the induction of GST1, Lox,
MAPK, and PAL genes at different stages of potato–
G. intraradices interaction. The result obtained for the
PT3 gene (a plant gene marker of AM root colonization)
demonstrated that the potato–G. intraradices association
was successfully established and the mutualistic exchange
between the two partners was effective. The induction of
defense genes, well known to be involved at different
stages of the AM symbiosis, demonstrated that the potato–
G. intraradices establishment in the MDP in vitro culture
system was suitable to study major changes in plant gene
expression and corroborated previous results of in vivo
studies. Our study opened new avenues to investigate the
molecular events or gene networks associated with the
plants–AM fungi symbiosis by making it possible to
synchronize the development of AM fungi in the roots of
plants grown in an established nonperturbed mycelium
network under rigorous in vitro culture conditions.

Acknowledgements This research was sponsored by the Direction
Générale de l’Agriculture de la Région wallonne under contract
number D31-1149, entitled Valorisation de la microflore bénéfique des
sols pour le contrôle de la flore pathogène des productions de pomme
de terre comme alternative à l’utilisation des pesticides. S. C.
gratefully acknowledges the financial contribution of the Belgian
Federal Science Policy Office (contract BCCM C3/10/003).

References

Antoniw JF, Ritter CE, Pierpoint WS, Van Loon LC (1980)
Comparison of three pathogenesis-related proteins from plants
of two cultivars of tobacco infected with TMV. J Gen Virol
47:79–87

Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O,
Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expres-
sion profiling of up-regulated plant and fungal genes in early and
late stages of Medicago truncatula–Glomus mosseae interactions.
Mycorrhiza 14:253–262

Cranenbrouck S, Voets L, Bivort C, Renard L, Stullu DG, Declerck S
(2005) Methodologies for in vitro cultivation of arbuscular
mycorrhizal fungi with root organs. In: Declerck S, Strullu DG,
Fortin JA (eds) In vitro culture of mycorrhizas. Springer,
Heidelberg, pp 341–348

Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the
intraradical forms of Glomus sp. isolated from a tropical
ecosystem: a proposed methodology for germplasm collection.
Mycologia 90:579–585

Deguchi Y, Banba M, Shimoda Y, Chechetka SA, Suzuri R, Okusako Y,
Ooki Y, Toyokura K, Suzuki A, Uchiumi T, Higashi S, Abe M,
Kouchi H, Izui K, Hata S (2007) Transcriptome profiling of Lotus
japonicus roots during arbuscular mycorrhiza development and
comparison with that of nodulation. DNA Res 14:117–133

Doner LW, Becard G (1991) Solubilisation of gellan gels by chelation
of cations. Biotechnol Tech 5:25–28

Dupré de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S
(2006) Transport of radiocaesium by arbuscular mycorrhizal
fungi to Medicago truncatula under in vitro conditions. Environ
Microbiol 8:1926–1934

Elfstrand M, Feddermann N, Ineichen K, Nagaraj VJ, Wiemken A,
Boller T, Salzer P (2005) Ectopic expression of the mycorrhiza-
specific chitinase gene Mtchit3–3 in Medicago truncatula root-
organ cultures stimulates spore germination of glomalean fungi.
New Phytol 167:557–570

Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan
AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ
cultures. Can J Bot 80:1–20

Franken P, Donges K, Grunwald U, Kost G, Rexr KH, Tamasloukht
MB, Waschke A, Zeuske D (2007) Gene expression analysis of
arbuscule development and functioning. Phytochemistry 68:68–74

Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal
hyphae in the soil: inoculum types and external hyphal
architecture. Mycologia 83:409–418

Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzia-
num elicit defence response genes in roots of potato plantlets
challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230

González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A,
MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a
Glomus intraradices gene encoding a putative Zn transporter of the
cation diffusion facilitator family. Fungal Genet Biol 42:130–140

Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A,
Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P (2004)
Identification of mycorrhiza-regulated genes with arbuscule
development-related expression profile. Plant Mol Biol 55:553–
566

Harrison M, Dixon R (1994) Spatial patterns of expression of
flavonoid/isoflavonoid pathway genes during interactions
between roots of Medicago truncatula and the mycorrhizal
fungus Glomus versiforme. Plant J 6:9–20

Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in
arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005)
Overlaps in the transcriptional profiles of Medicago truncatula
roots inoculated with two different Glomus fungi provide insights
into the genetic program activated during arbuscular mycorrhiza.
Plant Physiol 137:1283–1301

Kapulnik Y, Volpin H, Itzhaki H, Ganon D, Galili S, David R, Shaul
O, Elad Y, Chet I, Okon Y (1996) Suppression of defence
responses in mycorrhizal alfalfa and tobacco roots. New Phytol
133:59–64

Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and
characterization of two phosphate transporters from Medicago
truncatula roots: regulation in response to phosphate and to
colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant
Microbe Interact 11:14–22

206 Mycorrhiza (2010) 20:201–207



Liu J, Blaylock LA, Endre G, Cho J, Town CD, Vanden Bosch KA,
Harrison MJ (2003) Transcript profiling coupled with spatial
expression analyses reveals genes involved in distinct develop-
mental stages of the arbuscular mycorrhizal symbiosis. Plant Cell
15:2106–2123

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990)
A new method which gives an objective measure of colonization
of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol
115:495–501

Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C,
Vierheilig H (2005) Lack of mycorrhizal autoregulation and
phytohormonal changes in the supernodulating soybean mutant
nts1007. Planta 222:709–715

Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase
pathways in plant stress signalling. Trends Plant Sci 10:339–346

Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping
gene selection for real-time RT-PCR normalization in potato
during biotic and abiotic stress. J Exp Bot 56:2907–2914

Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression
software tool (REST) for group-wise comparison and statistical
analysis of relative expression results in real-time PCR. Nucleic
Acids Res 30:e36

Phillips JM, Hayman DS (1970) Improved procedures for clearing roots
and staining parasitic and vesicular–arbuscular mycorrhizal fungi
for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G,
Amrhein N, Bucher M (2001) A phosphate transporter expressed
in arbuscule-containing cells in potato. Nature 414:462–466

Reinhardt D (2007) Programming good relations—development of the
arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 10:98–105

Ruíz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V
(1999) Defense genes are differentially induced by a mycorrhizal
fungus and Rhizobium sp. in wild-type and symbiosis-defective
pea genotypes. Mol Plant Microbe Interact 12:976–984

Schuβler A, Schwarzott D, Walker C (2001) A new fungal phylum,
the Glomeromycota: phylogeny and evolution. Mycol Res
105:1413–1421

Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorh-
izes à vésicules et arbuscules en conditions axéniques. C R Acad
Sci 303:245–250

Stumpe M, Carsjens JG, Stenzel I, Gobel C, Lang I, Pawlowski K,
Hause B, Feussner I (2005) Lipid metabolism in arbuscular
mycorrhizal roots of Medicago truncatula. Phytochemistry
66:781–791

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De
Paepe A, Speleman F (2002) Accurate normalization of real-time
quantitative RT-PCR data by geometric averaging of multiple
internal control genes. Genome Biol 3(7)

Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S
(2005) Development of an autotrophic culture system for the in
vitro mycorrhization of potato plantlets. FEMS Microbiol Lett
248:111–118

Voets L, Goubau I, Olsson PA, Merckx R, Declerck S (2008) Absence
of carbon transfer between Medicago truncatula plants linked by
a mycorrhizal network, demonstrated in an experimental micro-
cosm. Fems Microbiol Ecol 65:350–360

Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S,
Declerck S (2009) Extraradical mycelium network of arbuscular
mycorrhizal fungi allows fast colonization of seedlings under in
vitro conditions. Mycorrhiza 19:346–356

Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P
(2006) Identification of heavy metal-induced genes encoding
glutathione S-transferases in the arbuscular mycorrhizal fungus
Glomus intraradices. Mycorrhiza 17:1–10

Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S,
Gianinazzi-Pearson V (2004) Fungal elicitation of signal
transduction-related plant genes precedes mycorrhiza establish-
ment and requires the dmi3 gene in Medicago truncatula. Mol
Plant Microbe Interact 17:1385–1393

Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer
F, Franken P, Kuster H, Krajinski F (2003) Transcriptional
changes in response to arbuscular mycorrhiza development in
the model plant Medicago truncatula. Mol Plant Microbe
Interact 16:306–314

Mycorrhiza (2010) 20:201–207 207


	Fast track in vitro mycorrhization of potato plantlets allow studies on gene expression dynamics
	Abstract
	Introduction
	Materials and methods
	Biological material
	Propagation and maintenance of stock of potato plantlets
	Culture, propagation, and maintenance of G. intraradices
	M. truncatula seed disinfection

	Experimental design
	Intraradical root colonization
	RNA extraction
	Reverse transcription
	Primer design
	Quantitative real-time PCR

	Results
	Time course of root colonization of potato plantlets grown in the extraradical mycelium network of G. intraradices
	Expression of marker gene of AM root colonization of potato plantlets grown in the extraradical mycelium network of G. intraradices
	Expression of defense response genes in potato plantlets grown in the extraradical mycelium network of G. intraradices

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


